EconPapers    
Economics at your fingertips  
 

Carbon emission prediction model of prefecture-level administrative region: A land-use-based case study of Xi'an city, China

Haizhi Luo, Yingyue Li, Xinyu Gao, Xiangzhao Meng, Xiaohu Yang and Jinyue Yan

Applied Energy, 2023, vol. 348, issue C, No S0306261923008528

Abstract: Climate change has become a global concern, and the prediction of carbon emissions is key to achieving carbon-reduction goals. The existing framework cannot accurately reflect the spatial distribution of carbon emissions, making it difficult to guide urban planning and management. Therefore, in this study, a carbon emission spatial simulation and prediction model was established. The model includes the GIS-Kernel Density sub-model for subdividing built-up area, the Land Use-Carbon Emission sub-model for establishing the correlation between land use and carbon emissions, the Multi Objective Programming-Principal Component Analysis-BP neural network sub-model for presetting development scenarios, and the Patch-generating Land-use Simulation sub-model for predicting. Xi'an was chosen as the study site, and two extreme scenarios were determined. A total of 373,318 development paths were segmented from the interval, and the optimal path was selected. All scenarios were simulated, and the carbon emissions and their spatial distribution were calculated. The results showed that the overall accuracy of the simulation exceeded 90%. Under the optimal path, Xi'an's carbon emissions reach 60.6 million tons at peak time, which will be reduced to 47.38 million tons by 2060. In addition, the model analyzed the temporal and spatial changes of carbon sources and sinks and drew up the path of carbon reduction by technology and urban planning. This model can provide a reference for regional carbon-reduction planning and carbon reduction technology implantation. It can propose strategies from the perspective of planning and management.

Keywords: Land use; Carbon emission; Simulation and prediction; Land-use subdivision; Prefecture-level administrative region (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923008528
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:348:y:2023:i:c:s0306261923008528

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.121488

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923008528