Triboelectric-electromagnetic hybrid generator assisted by a shape memory alloy wire for water quality monitoring and waste heat collecting
Rui Guo,
Kai Zhuo,
Qiang Li,
Tao Wang,
Shengbo Sang and
Hulin Zhang
Applied Energy, 2023, vol. 348, issue C, No S0306261923008735
Abstract:
Thermal energy has garnered significant attention due to its widespread availability and environmentally friendly nature. Currently, the collection of thermal energy primarily depends on thermoelectric generators, which require significant temperature differences and high-performance materials, consequently imposing significant limitations on energy collection efficiency. Here, a shape-memory-alloy-wire driven hybrid generator (HG) composed of triboelectric nanogenerator and electromagnetic generator is developed, which could efficiently convert thermal energy into electric energy. Due to its remarkable output performance, achieving an output voltage of 8 V and an output current of 2.5 μA, the HG can be utilized for self-powered monitoring of water temperature, ion concentration, and sewage composition. This work provides a new strategy for collecting thermal energy and self-powered monitoring of water quality.
Keywords: Triboelectric; Hybrid; Self-powered; Water quality monitoring; Shape memory alloy (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923008735
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:348:y:2023:i:c:s0306261923008735
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121509
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().