Hierarchical learning, forecasting coherent spatio-temporal individual and aggregated building loads
Julien Leprince,
Henrik Madsen,
Jan Kloppenborg Møller and
Wim Zeiler
Applied Energy, 2023, vol. 348, issue C, No S0306261923008747
Abstract:
Optimal decision-making compels us to anticipate the future at different horizons. However, in many domains connecting together predictions from multiple time horizons and abstractions levels across their organization becomes all the more important, else decision-makers would be planning using separate and possibly conflicting views of the future. To this end, this work proposes a novel multi-dimensional hierarchical forecasting method built upon structurally-informed machine-learning regressors. A generic formulation of multi-dimensional hierarchies, reconciling spatial and temporal dimensions under a common frame is initially defined. Next, a coherency-informed hierarchical learner is developed built upon a custom loss function leveraging optimal reconciliation methods. The coherency of the produced hierarchical forecasts is then secured using similar reconciliation techniques, granting decision-makers a common view of the future serving aligned decision-making. The method is evaluated on two different case studies to predict building electrical loads across spatial, temporal, and spatio-temporal hierarchies. Although the regressor natively profits from computationally efficient learning, results displayed disparate performances, demonstrating the value of hierarchical-coherent learning in only one setting. Yet, existing obstacles were clearly delineated, presenting distinct pathways for future work. Overall, the paper expands and unites traditionally disjointed hierarchical forecasting methods providing a fertile route toward a novel generation of forecasting regressors.
Keywords: Hierarchical forecasting; Coherency; Spatio-temporal dimensions; Deep learning; Smart building (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923008747
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:348:y:2023:i:c:s0306261923008747
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121510
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().