A proposed method of bubble absorption-based deep dehumidification using the ionic liquid for low-humidity industrial environments with experimental performance
Bowen Cao,
Yonggao Yin,
Guoying Xu,
Xiaosong Cheng,
Wenzhang Li,
Qiang Ji and
Wanhe Chen
Applied Energy, 2023, vol. 348, issue C, No S030626192300898X
Abstract:
Liquid desiccant deep dehumidification (LDDD) is an excellent way to achieve low-carbon transformation of low-humidity industrial buildings. Currently, it is essential to improve its ability to produce lower humidity air (i.e., with a dew point below −10 °C). Functional ionic liquids (ILs) with extremely low vapor pressure, non-crystallization, and non-corrosion are ideal substitutes for high mass fraction aqueous inorganic solutions (e.g., LiCl, LiBr) in traditional liquid desiccant deep dehumidification. Meanwhile, the bubble absorption mode allows water vapor to condense on the huge contact surface between the bubbles and desiccant. Accordingly, it is expected to solve the low wettability and transfer unit number (NTUm) in falling-film absorption mode caused by the high viscosity of ILs. Thus, a new method of bubble absorption-based deep dehumidification using the IL is proposed. To validate it, the bubble absorption-based deep dehumidifier using a novel ionic liquid (BADD-IL) is developed and tested under different operating conditions. Besides, its moisture effectiveness is compared with those of falling film absorption-based dehumidifiers. The results show that increasing the liquid height, superficial velocity, as well as lowering the solution temperature, can strengthen the deep dehumidification performance, effectiveness and cooling ability to varying degrees. The increase of liquid height and superficial velocity promotes the gas-liquid interfacial area from different aspects, thus enhancing the transfer efficiency. Notably, the insufficient interfacial areas caused by low solution temperature cannot prevent better transfer efficiency dominated by high potential difference. Moreover, the NTUm of BADD-IL has a wide adjustment range (0.1–1.7), and the minimum supply air humidity ratio and maximum moisture effectiveness can reach 1.1 g/kgda and 81%, respectively. In overall, this study aims to further explore the deep dehumidification potential of ILs, and inform ideas for the LDDD development.
Keywords: Liquid desiccant deep dehumidification; Ionic liquids; Bubble absorption; Low-humidity environment; Experimental performance (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192300898X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:348:y:2023:i:c:s030626192300898x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121534
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().