A novel lithium-ion battery state of charge estimation method based on the fusion of neural network and equivalent circuit models
Aihua Tang,
Yukun Huang,
Shangmei Liu,
Quanqing Yu,
Weixiang Shen and
Rui Xiong
Applied Energy, 2023, vol. 348, issue C, No S030626192300942X
Abstract:
Accurate estimating the state of charge (SOC) can improve battery reliability, safety, and extend battery service life. The existing battery models used for SOC estimation inadequately capture the dynamic characteristics of a battery in a wide temperature over the full SOC range, leading to significant inaccuracies in SOC estimation, especially in low temperature and low SOC. A novel SOC estimation approach is developed based on a fusion of neural network model and equivalent circuit model. Firstly, the weight-SOC-temperature relationship is established by obtaining the weights of the equivalent circuit model and the neural network model offline using the standard deviation weight assignment method. Following that, an online adaptive weight correction approach is implemented to update the weight-SOC-temperature relationship. Finally, a novel multi-algorithm fusion technique is utilized to achieve SOC estimation accuracy within 1%. The results clearly demonstrate that the developed approach achieves twice the accuracy of the existing approach, highlighting its superior effectiveness.
Keywords: Lithium-ion batteries; Fusion model; State of charge estimation; Fusion algorithm; Battery modeling (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192300942X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:348:y:2023:i:c:s030626192300942x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121578
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().