How to improve the application potential of deep learning model in HVAC fault diagnosis: Based on pruning and interpretable deep learning method
Yuan Gao,
Shohei Miyata and
Yasunori Akashi
Applied Energy, 2023, vol. 348, issue C, No S0306261923009558
Abstract:
Automated fault detection and diagnosis (AFDD) plays a crucial role in enhancing the energy efficiency of air conditioning systems. Deep learning has emerged as a promising tool for image classification, and its application in the context of AFDD of HVAC systems is gaining traction due to its exceptional performance. However, the deployment cost of deep models in practical scenarios is increased due to the large number of parameters and the lack of interpretability. This paper focuses on improving the potential of deep learning models for AFDD in real HVAC systems. We use pruning to reduce the number of parameters in the model and use layer-wise relevance propagation (LRP) to improve the interpretability of the model. The case study builds a simulation model and 31 kinds of fault data sets based on the actual HVAC in Japan. Based on the findings, Without loss of accuracy, the pruning method can reduce the model size by more than 99 % and maintain 90% classification accuracy. The LRP score allows model users to find out the input data that most affects the results at each diagnosis, improving interpretability.
Keywords: Fault diagnostics; Interpretable deep learning; Model pruning; Convolutional neural network (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923009558
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:348:y:2023:i:c:s0306261923009558
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121591
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().