Optimal dynamic power allocation for electric vehicles in an extreme fast charging station
Hongtao Ren,
Yue Zhou,
Fushuan Wen and
Zhan Liu
Applied Energy, 2023, vol. 349, issue C, No S0306261923008619
Abstract:
With the ever-increasing penetration of electric vehicles (EVs), extreme fast charging stations (XFCSs) are being widely deployed, wherein battery energy storages (BESs) are also installed for reducing the peak charging power. However, integrating the XFCS with a high-capacity power converter into the power distribution network (PDN) is difficult and uneconomical due to the restrictions regarding urban planning and high investment in PDN expansion. Considering the fluctuation in the EV charging demand and the limited capacity of the power converter, a collaborative policy for real-time EV charging power allocation and BES discharging power control is proposed based on Markov Decision Process (MDP), which is solved by the constraint deep deterministic policy gradient (CDDPG). The proposed model makes it possible to integrate the XFCS with reduced capacity power converter into the PDN with a minimal negative impact on the quality of service (QoS) of EV owners. Finally, the experimental evaluation with real-word data sets demonstrates that the proposed approach is more effective than benchmark methods in dynamically allocating charging power for XFCS.
Keywords: Battery energy storage; Charging/discharging control; Constraint deep deterministic policy gradient; Electric vehicle; Extreme fast charging station; Power allocation (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923008619
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:349:y:2023:i:c:s0306261923008619
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121497
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().