EconPapers    
Economics at your fingertips  
 

Stochastic optimization of home energy management system using clustered quantile scenario reduction

Minsoo Kim, Taeseop Park, Jaeik Jeong and Hongseok Kim

Applied Energy, 2023, vol. 349, issue C, No S0306261923009194

Abstract: Recent proliferation of renewable energy has increased the installation of residential energy sources (e.g., roof-top photovoltaic (PV) panel and residential wind turbine) in households. To manage electricity usage incurred by renewable energy and residential load, home energy management systems (HEMSs) provide intelligence to home by real-time monitoring and controlling appliances. In this paper, we propose a novel HEMS framework considering multiple uncertainties from renewable generation and load profiles. First, we generate scenarios of each uncertainty through deep learning. Then, we propose an algorithm called clustered quantile scenario reduction (CQSR) to reduce computation time while preserving the stochastic properties of generated scenarios based on the Wasserstein-1 distance. We prove that solution of CQSR is determined by the number of clustered scenarios. Also, we show provable upper bound of performance degradation incurred by the scenario reduction. Simulation results show that the optimality gap and computation time of the proposed framework is substantially reduced compared to other HEMS algorithms, e.g., by up to 81.4% and 93.7%, respectively. Furthermore, although the original scenarios are generated through different scenario generation algorithms, HEMS using CQSR is less vulnerable to performance degradation incurred by scenario reduction.

Keywords: Smart home; Home energy management system; Deep learning; Stochastic optimization; Scenario reduction (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923009194
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009194

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.121555

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009194