ResQ-IOS: An iterative optimization-based simulation framework for quantifying the resilience of interdependent critical infrastructure systems to natural hazards
Hamed Hafeznia and
Božidar Stojadinović
Applied Energy, 2023, vol. 349, issue C, No S0306261923009224
Abstract:
Critical Infrastructure Systems are highly complex and interdependent. Growing complexity and interdependency between infrastructure systems and frequent exposure to extreme events have inevitably increased the probability of cascading failures and the prolonged lack of serviceability in urban communities, especially so for energy systems. The resilience analysis of interdependent infrastructure systems against natural hazards provides stakeholders with a comprehensive outlook on recovery strategies to minimize the damage costs and losses caused by extreme events. This paper introduces the ResQ-IOS, a Resilience Quantification Iterative Optimization-based Simulation (IOS) framework for quantifying the resilience of interdependent infrastructure systems to natural hazards with the capability of considering the real-world conditions for the status of infrastructure systems' components. The ResQ-IOS framework consists of five modules: risk assessment, simulation, optimization, database, and controller. To evaluate the capabilities of this framework, the seismic resilience of interdependent energy infrastructure networks (power, natural gas, and water) in Shelby County (TN), USA, was assessed. The results of the resilience analysis of the case study suggest that the water network is the best candidate for implementing pre-disaster Resilience Enhancement Measures (REMs), like increasing the supply capacity. Due to the controlling role of the power network in the community's recovery process, it is recommended that post-disaster REMs, such as increasing the number of Repair and Maintenance (R&M) teams, should be applied to the power network to speed up the restoration of failed components in that network and consequently, shorten the recovery duration of the community. The ResQ-IOS can be employed as a useful computational tool for planning the resilience-oriented sustainable development of urban communities by, for example, deploying Renewable Energy (RE)-based strategies to enhance their disaster resilience.
Keywords: ResQ-IOS; Interdependent critical infrastructure systems; Resilience analysis; Iterative optimization-based simulation (IOS) framework; Shelby County (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923009224
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009224
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121558
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().