State-of-charge estimation for onboard LiFePO4 batteries with adaptive state update in specific open-circuit-voltage ranges
Rui Xiong,
Yanzhou Duan,
Kaixuan Zhang,
Da Lin,
Jinpeng Tian and
Cheng Chen
Applied Energy, 2023, vol. 349, issue C, No S0306261923009455
Abstract:
Accurate estimation of the state-of-charge (SOC) is crucial for efficient and safe battery applications. However, existing SOC estimation methods fail to provide accurate SOC estimation for LiFePO4 batteries that have a flat voltage-SOC relationship. The analysis of the voltage-SOC characteristics shows that the failure of the present model-based methods can be ascribed to their inability to simultaneously accommodate the differences in voltage characteristics between different open-circuit-voltage (OCV) ranges. To overcome this limitation, an adaptive recursive square root algorithm is used to online identify OCV and other battery model parameters. Then, the parameters of the extended Kalman filter are adaptively updated in different OCV ranges, which are distinguished based on the identified OCV. Additional filtering methods are employed to enhance the stability of the estimation. Large-scale experiments are conducted at different temperatures with various driving profiles for method validation. While conventional methods fail to converge, the proposed method ensures both high accuracy and stability, with a maximum absolute error of <2%. The viability of the proposed method is further verified using data collected from real battery systems. Our work lays a foundation for the reliable management of LiFePO4 batteries in electric vehicles.
Keywords: Adaptive recursive square root (ARSR); Extended Kalman filter (EKF); LiFePO4 battery; Open circuit voltage; State of charge (SOC) (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923009455
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009455
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121581
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().