Interpretable building energy consumption forecasting using spectral clustering algorithm and temporal fusion transformers architecture
Peijun Zheng,
Heng Zhou,
Jiang Liu and
Yosuke Nakanishi
Applied Energy, 2023, vol. 349, issue C, No S0306261923009716
Abstract:
Accurate building energy consumption forecasting is crucial for developing efficient building energy management systems, improving energy efficiency, and local building energy supervision and management. However, short-term building energy consumption forecasting is challenging due to highly non-smooth and volatile trends. In this paper, we present a novel methodology that combines interpretable decomposition methods with an interpretable forecasting model. We first illustrate a daily energy consumption pattern recognition (DECPR) method, which decomposes daily energy consumption patterns into interpretable energy consumption subsequences. To achieve satisfactory forecasting performance, we design the vector representation of each subsequence as a static input to the temporal fusion transformers (TFT) model. This vector representation integrates the DECPR method into the TFT model. The TFT model produces interpretable outputs, such as the attention analysis of different step lengths and the visualization of the importance ranking of exogenous variables, including meteorological data, calendar information, and the vector representation. Empirical studies demonstrate that our proposed DECPR-TFT system outperforms comparable models with a mean absolute percentage error (MAPE) of 6.11%, which is significantly lower than other models. These interpretable outputs provide valuable insights for researchers seeking to develop energy-saving operation strategies in buildings. Overall, our methodology offers a promising solution for short-term building energy consumption forecasting that can contribute to more efficient building energy management and energy-saving operation strategies.
Keywords: Building energy consumption forecasting; Attention mechanism; Interpretable decomposition method; Interpretable deep learning model (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923009716
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009716
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121607
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().