Determination of half-cell open-circuit potential curve of silicon-graphite in a physics-based model for lithium-ion batteries
Yizhao Gao,
Ziqiang Sun,
Dong Zhang,
Dapai Shi and
Xi Zhang
Applied Energy, 2023, vol. 349, issue C, No S0306261923009856
Abstract:
Lithium-ion batteries with silicon/graphite anodes have the potential to deliver high theoretical capacity. However, these electrodes exhibit significant hysteresis, which presents challenges in accurately estimating the open-circuit potentials (OCP) of the electrodes within a physics-based model. This paper proposes a method to establish the relationship between the electrode OCP and stoichiometry. Galvanostatic intermittent titration technique (GITT) tests are performed on half-cells to measure the charge and discharge OCP. To account for hysteresis, a hysteresis factor is defined to balance the lithiation and de-lithiation OCP. The estimated open-circuit voltage (OCV) of the full-cell is obtained by subtracting the anode OCP from the cathode OCP. The OCP and hysteresis factor are then optimized by minimizing the error between the measured OCV and the estimated OCV. Two different OCV test methods, namely the incremental method and C/30 galvanostatic method, are compared. The OCV estimation for fresh cells shows good agreement with experimental values, with root-mean-square errors (RMSEs) below 6.682 mV. To evaluate the effectiveness of the obtained OCPs in the full-cell model, the optimized OCPs are incorporated into the physics-based model. Under the Hybrid Pulse Power Characterization (HPPC) test, the electrochemical model utilizing the optimized OCP with the incremental OCV and C/30 galvanostatic OCV exhibits RMSEs of 10.587 mV and 11.016 mV, respectively, in predicting the cell voltage. Finally, the OCP identification method is assessed with cells at different aging states. The OCV predictions for degraded cells maintain RMSEs below 9.074 mV, thus validating the effectiveness of the developed OCP estimation method.
Keywords: Lithium-ion battery; Silicon/graphite negative electrode; Open circuit potential; Open circuit voltage; Pseudo-two-dimensional model; Voltage hysteresis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923009856
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009856
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121621
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().