EconPapers    
Economics at your fingertips  
 

Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy

Long Wu, Xunyuan Yin, Lei Pan and Jinfeng Liu

Applied Energy, 2023, vol. 349, issue C, No S0306261923009911

Abstract: The close integration of increasing operating units into an integrated energy system (IES) results in complex interconnections between these units. The strong dynamic interactions create barriers to designing a successful distributed coordinated controller to achieve synergy between all the units and unlock the potential for grid response. To address these challenges, we introduce a directed graph representation of IESs using an augmented Jacobian matrix to depict their underlying dynamics topology. By utilizing this representation, a generic subsystem decomposition method is proposed to partition the entire IES vertically based on the dynamic time scale and horizontally based on the closeness of interconnections between the operating units. Exploiting the decomposed subsystems, we develop a cooperative distributed economic model predictive control (DEMPC) with multiple global objectives that regulate the generated power at the grid’s requests and satisfy the customers cooling and system economic requirements. In the DEMPC, multiple local decision-making agents cooperate sequentially and iteratively to leverage the potential across all the units for system-wide dynamic synergy. Furthermore, we discuss how subsystem decomposition impacts the design of distributed cooperation schemes for IESs and provide a control-oriented basic guideline on the optimal decomposition of complex energy systems. Extensive simulations demonstrate that the control strategies with different levels of decomposition and collaboration will lead to marked differences in the overall performance of the IES. The standard control scheme based on the proposed subsystem configuration outperforms the empirical decomposition-based control benchmark by about 20%. The DEMPC architecture further improves the overall performance of the IES by about 55% compared to the benchmark.

Keywords: Multi-/integrated energy systems; Real-time coordination; Directed graph; Vertical–horizontal decomposition; Distributed cooperation; Model predictive control (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923009911
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009911

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.121627

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009911