A structured phase change material integrated by MXene/AgNWs modified dual-network and polyethylene glycol for energy storage and thermal management
Yan Ma,
Minming Zou,
Wenjing Chen,
Wenxing Luo,
Xiaowu Hu,
Shikun Xiao,
Lixiang Luo,
Xiongxin Jiang and
Qinglin Li
Applied Energy, 2023, vol. 349, issue C, No S030626192301022X
Abstract:
Phase change materials (PCMs) present promising potential in the application of thermal management. Nevertheless, low thermal conductivity and risk of liquid leakage hindered the development of PCMs with broad adoption. Here, we fabricate a shape-stable composite phase change material by encapsulating polyethylene glycol (PEG) into a dual-network hydrogel, which was modified using Ti3C2Tx MXenes and silver nanowires (AgNWs). With the synergistic effect of MXene nanosheets and AgNWs, the composite material that was prepared demonstrates a significant increase in thermal conductivity, reaching a value of 0.64 (W/m·K) and also exhibits a suitable photo-thermal conversion efficiency (88.9%). Moreover, the resulting composite PCM with high-level of PEG loading (90.1%) deliver a remarkable phase change enthalpy (124.8 J/g), highlighting its excellent energy storage capability. Additionally, the final composite displays reliable structural stability and exceptional thermal management performance by reducing the operational temperature of a typical lithium-ion battery by over 12 °C during a 3C discharge process. We demonstrate a promising approach for developing composite PCM for thermal management.
Keywords: Composite phase change material; MXene/AgNWs modified hydrogel; Dual-network framework; High enthalpy efficiency; Thermal management for battery (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192301022X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:349:y:2023:i:c:s030626192301022x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121658
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().