EconPapers    
Economics at your fingertips  
 

Techno-economic and environmental evaluation on radiative sky cooling-based novel passive envelope strategies to achieve building sustainability and carbon neutrality

Jianheng Chen, Lin Lu and Quan Gong

Applied Energy, 2023, vol. 349, issue C, No S0306261923010437

Abstract: As the pursuit of carbon neutrality gains momentum, retrofitting high-performance buildings with novel, energy-efficient passive envelope systems has emerged as a promising pathway towards building sustainability. To this end, this study aims to propose, evaluate, and optimize such envelope systems considering varying climate patterns in China by incorporating state-of-the-art passive cooling strategies into buildings. Comprehensive techno-economic and environmental evaluations were conducted on a standard-compliant three-story typical commercial building, considering newly proposed passive approaches. The energy performance evaluation reveals that the super-cool white roof corresponds to annual cooling electricity savings of 2.5–6.1% for the entire building and 7.0–17.1% for the top floor in response to varying climate patterns. By contrast, the radiative cooling red and yellow walls exhibit cooling energy saving rates of 1.4–1.9% and 1.9–2.6%, respectively. The insulated grey clear double-glazing window can garner even greater cooling energy savings of 2.6–13.5%. It is highlighted that for the cities located in cold regions, the thermal improvement in windows offers a significantly greater opportunity for cost savings and carbon reduction compared to retrofitting roof and wall surfaces. To maximize net savings, the optimization scheme can achieve cost savings in hot-summer cities ranging from 859.1 to 1835.1 $/year, with an average of 1151.2 $/year, and from 784.4 to 1076.5 $/year, with an average of 658.8 $/year for cold cities. To minimize carbon emissions, the optimal design approach can reduce carbon emissions by 18,093.6–37,526.6 kg/year, with an average of 22,745.0 kg/year, in response to varying climate patterns. Overall, this study sheds light on the state-of-the-art passive envelope strategies that can achieve energy-efficient carbon-neutral buildings for a variety of climates in China. The optimization scheme proposed in this study provides a useful framework for designing passive envelope systems that are tailored to specific climate patterns.

Keywords: Passive envelope; Building energy; Radiative cooling; Insulated glazing; Building sustainability (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923010437
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:349:y:2023:i:c:s0306261923010437

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.121679

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923010437