EconPapers    
Economics at your fingertips  
 

Enhancing PV panel segmentation in remote sensing images with constraint refinement modules

Hongjun Tan, Zhiling Guo, Haoran Zhang, Qi Chen, Zhenjia Lin, Yuntian Chen and Jinyue Yan

Applied Energy, 2023, vol. 350, issue C, No S0306261923011212

Abstract: Incorrect predictions or underestimation of a city's solar potential can result from neglecting common features of photovoltaic (PV) panels from remote sensing images. This paper proposes an improved approach to address the challenge of accurately segmenting PV panels from remote sensing images using deep learning methods. The proposed method incorporates common features of PV panels and a constraint refinement module (CRM) to perform the localization of PV panel regions and shape regularization more accurately. Specifically, the method uses a color loss function based on prior knowledge of color to refine the predicted region with correct color information among confusing objectives, and a shape loss function based on multi-layer shape targets calculation to refine the initial segments and constrain the edge information of predicted regions. Different CRMs are embedded into the four refined initial segment modules, respectively, to improve the detection IoU of PV panels by up to 7.44%. The best CRM-integrated model performs the best IoU of 74.66% when segmenting PV panels. The proposed method has important implications for urban PV panel segmentation at the city level and provides a promising solution for remote sensing image-based PV plate segmentation tasks in challenging scenarios.

Keywords: Photovoltaic panels; Segmentation; Prior knowledge; Common features; Constraint refinement module (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923011212
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:350:y:2023:i:c:s0306261923011212

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.121757

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:350:y:2023:i:c:s0306261923011212