EconPapers    
Economics at your fingertips  
 

Optimization of building demand flexibility using reinforcement learning and rule-based expert systems

Xinlei Zhou, Shan Xue, Han Du and Zhenjun Ma

Applied Energy, 2023, vol. 350, issue C, No S030626192301156X

Abstract: The increasing use of renewable energy in buildings requires optimization of building demand flexibility to reduce energy costs and carbon emissions. Nevertheless, the optimization process is generally challenging that needs to consider the on-site intermittent energy supply, dynamic building energy demand, and proper utilization of energy storage systems. Leveraging the growing availability of operational data in buildings, data-driven strategies such as reinforcement learning (RL) have emerged as effective approaches to optimizing building demand flexibility. However, training a reliable RL agent is practically data-demanding and time-consuming, limiting its practical applicability. This study proposes a new strategy that integrates a rule-based expert system (RBES) and RL agents into the decision-making process to jointly reduce building energy costs, minimize the peak-to-average ratio (PAR) of grid power, and maximize PV self-consumption. In this strategy, the RBES determines system operation directly in less complex decision-making scenarios, while, in more intricate decision-making environments, it provides a reference decision for RL to explore optimal solutions further. This integration empowers RL agents to avoid unnecessary exploration and significantly enhance learning efficiency. The proposed strategy was tested using PV generation data and energy consumption data of a low energy office building. The results demonstrated an 85.7% improvement in RL learning efficiency and this strategy can successfully avoid sub-optimal convergence during policy learning. Compared to relying solely on the RBES, the proposed strategy led to 5.4% and 19.2% reductions in the electricity costs and daily PAR of grid power at peak hours, respectively. The strategy also achieved a satisfying PV self-consumption ratio of 62.4%, which is merely 0.4% lower than the optimal value determined by the RBES strategy that prioritized maximizing PV self-consumption. Additionally, compared with a model predictive control method developed for cost reduction, the strategy achieved similar cost savings while significantly reducing the decision time.

Keywords: Demand flexibility; Reinforcement learning; Learning efficiency; Heuristic rules (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192301156X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:350:y:2023:i:c:s030626192301156x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.121792

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:350:y:2023:i:c:s030626192301156x