On full-life-cycle SOC estimation for lithium batteries by a variable structure based fractional-order extended state observer
Xu Zhao,
Yongan Chen,
Luowen Chen,
Ning Chen,
Hao Wang,
Wei Huang and
Jiayao Chen
Applied Energy, 2023, vol. 351, issue C, No S0306261923011923
Abstract:
Accurate SOC estimation of lithium batteries are crucial for the efficient operation of new energy storage systems. During the ageing of the battery, structure and parameters of the battery model, especially internal resistance, may change, which has a particularly significant impact on the accuracy of the model. For this reason, this paper proposes a SOC estimation method based on the extended state observer of the variable structure fractional order model. Firstly, an adaptive method for the structure and parameters of fractional order model through distribution of relaxation times (DRT) is proposed on full-cycle-life of lithium battery. The DRT is extracted from the Electrochemical Impedance Spectroscopy (EIS) of the lithium battery. The order and the initial parameters of the fractional order model of the lithium battery is determined by the characteristics of DRT during the ageing process of the lithium battery. Adaptive adjustment of model is realized by parameter identification combining with time domain data. Then, a fractional-order extended state observer is proposed to estimate SOC by treating internal resistance as an extended state, thus realizing online estimation of internal resistance uncertainty. The Lyapunov stability analysis proves that the estimation error of the observer is uniformly ultimately bounded. Finally, the experimental simulation analysis shows that the accuracy of the second-order model is significantly improved compared with the first-order model, and the accuracy improvement of the third-order model is limited compared with the second-order model. The MAE of the proposed algorithm is as low as 0.73%.
Keywords: Lithium battery; State of charge; Fractional order model; Extended state observer; Distribution of relaxation time; Ageing of battery (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923011923
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:351:y:2023:i:c:s0306261923011923
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121828
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().