EconPapers    
Economics at your fingertips  
 

Plasma-catalytic pyrolysis of polypropylene for hydrogen and carbon nanotubes: Understanding the influence of plasma on volatiles

Haoyu Xiao, Shujiang Li, Zhen Shi, Cunhao Cui, Sunwen Xia, Yingquan Chen, Zhongyue Zhou, Xin Tu, Xu Chen, Haiping Yang and Hanping Chen

Applied Energy, 2023, vol. 351, issue C, No S0306261923012126

Abstract: Plasma-catalytic pyrolysis was developed for upgrading polypropylene (PP) pyrolysis volatiles to co-produce carbon nanotubes (CNTs) and hydrogen. To uncover the role of plasma on the plastic catalytic pyrolysis process, the pyrolysis of polypropylene (PP) over Fe/γ-Al2O3 was carried out in a two-stage pyrolysis system with a coaxial dielectric barrier discharge (DBD) plasma reactor. The results showed that the plastic pyrolysis volatiles were further cleaved and activated with plasma, resulting in more active carbon species for the growth of CNTs. Compared to conventional catalytic pyrolysis, plasma addition shifted the initial formation temperature of CNTs to a lower ambient temperature by ∼100 °C, and significantly promoted the conversion of liquid and gaseous products to CNTs and hydrogen, with higher carbon and hydrogen yields of ∼322 mg/gplastic and 30 mmol/gplastic, respectively. In addition, the degree of graphitization of the CNTs in the presence of the plasma was significantly enhanced with less defectivity. The influence of catalytic temperature variation caused by plasma on CNTs growth was also discussed from the perspective of volatile evolution. This work highlights the potential of plasma-catalytic pyrolysis for the production of hydrogen and high-value carbon materials from plastic waste.

Keywords: Plastic; Pyrolysis; Plasma-catalysis; Hydrogen; Carbon nanotubes (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923012126
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:351:y:2023:i:c:s0306261923012126

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.121848

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:351:y:2023:i:c:s0306261923012126