EconPapers    
Economics at your fingertips  
 

Process design and energy analysis on synthesis of liquid fuels in an integrated CCUS system

Ning Luo, Binlin Dou, Hua Zhang, Tiebing Yang, Kai Wu, Chunfei Wu, Haisheng Chen, Yujie Xu and Wei Li

Applied Energy, 2023, vol. 351, issue C, No S0306261923012679

Abstract: Under the high attention of the international community to CO2 emissions, the capture utilization and storage (CCUS) and the CO2 hydrogenation fuel production have become two popular directions, especially for the combination of the two processes. In this paper, the production of liquid fuels via the methanol synthesis pathway in an integrated CCUS system based on Aspen Plus models was studied. The NH3-CO2-H2O absorption was used to capture CO2 and hydrogen was provided by water electrolysis using renewable energy sources. A two-stage reactor with a recirculating stream was specified for the process of CO2 hydrogenation to synthesize methanol, and the liquid fuel dimethyl ether (DME) was reproduced by dehydrating methanol (Power-to-Liquid). The amount of absorbent used for the carbon capture process was determined and the yield differences due to the number of cycles in the intermediate methanol synthesis reaction were analyzed. It is possible to convert 4.15 t of CO2 per tonne of DME produced at the mass material balance of the process. The optimization of the heat exchange network and the energy requirements for the total process were evaluated. It is calculated that the energy involved in producing 1 ton of DME in the process model is 176 GJ. The analysis of the overall process and the evaluation of models could provide options for the possibility of CCUS engineering application.

Keywords: Carbon capture; utilization and storage (CCUS); CO2 hydrogenation; Synthetic fuels; Power-to-liquid; Energy requirement (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923012679
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:351:y:2023:i:c:s0306261923012679

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.121903

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:351:y:2023:i:c:s0306261923012679