EconPapers    
Economics at your fingertips  
 

Exploring particle-current collector contact damage in Li-ion battery using DEM-FEM scheme

Yanjie Song, Kai Gao, Chunwang He, Yikun Wu, Shuangquan Yang, Na Li, Le Yang, Yiqi Mao, Wei-Li Song and Haosen Chen

Applied Energy, 2023, vol. 351, issue C, No S0306261923012680

Abstract: Calendering is an essential step in the manufacturing process of lithium-ion batteries. However, the intrusion of active particles into metal foil can damage the current collector during calendering. Here, we investigate the changes in surface morphology and the tensile properties of current collector after calendering. The damage mechanisms of tensile strength reduction for current collector due to compressive pressure are revealed by combining the calendering tests, tensile experiments, and simulations. Specifically, the DEM-FEM scheme is proposed, which combines the discrete element method (DEM) with the finite element method (FEM) to characterize the mechanical behavior of current collectors after the intrusion of active particles. The results show that the current collectors become more brittle and vulnerable with the increase of compressive pressure. Finally, the failure phase diagrams are presented during the winding and electrochemical processes. This study can reveal the failure behavior of current collectors and guides the electrode manufacturing optimization.

Keywords: Calendering; Current collector; Mechanical damage; Lithuim-ion battery (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923012680
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:351:y:2023:i:c:s0306261923012680

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.121904

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:351:y:2023:i:c:s0306261923012680