EconPapers    
Economics at your fingertips  
 

Studying the performance of a pilot scale vacuum-based membrane dehumidifier

T.D. Bui, W.D. Chen, M.R. Islam, D. Zhao and K.J. Chua

Applied Energy, 2023, vol. 351, issue C, No S0306261923012710

Abstract: Research on vacuum-based membrane dehumidification (VMD) has gained significant traction due to it being an efficient isothermal and eco-friendly process. However, most research works are focused on studying well-defined lab-scale membrane dehumidifiers. Therefore, key results on larger-size membrane dehumidifiers are far and few. In this work, a large-scale pilot-scale vacuum membrane prototype is developed and tested for the purpose of achieving high-performing air dehumidification in tropical climate conditions. The membrane prototype comprises 78 m2 of a flat-sheet composite membrane which possesses a high water vapor permeance and selectivity. It is able to remove 25 kg/h of water vapor from input humid air with a dehumidification COP of 2. This COP is much higher than that of a conventional desiccant dehumidifier and reaches 85% of the theoretical COP limit of a single stage pumping vacuum membrane dehumidifier. It is expected that a dehumidification COP of up to 16 can be achieved when this membrane prototype is coupled with a pumping-condensing system with high operating efficacy. The developed VMD system has highly stable performance in 8-week operation test.

Keywords: Membrane dehumidification; Membrane module; Air conditioning; Permeability; Coefficient of performance (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923012710
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:351:y:2023:i:c:s0306261923012710

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.121907

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:351:y:2023:i:c:s0306261923012710