Assessing the grid impact of Electric Vehicles, Heat Pumps & PV generation in Dutch LV distribution grids
Nikolaos Damianakis,
Gautham Ram Chandra Mouli,
Pavol Bauer and
Yunhe Yu
Applied Energy, 2023, vol. 352, issue C, No S0306261923012424
Abstract:
Low Carbon Technologies (LCTs), such as Photovoltaics (PVs), Electric Vehicles (EVs), and Heat Pumps (HPs), are expected to cause a huge electric load in future distribution grids. This paper investigates the grid impact in terms of over-loading and nodal voltage deviations in different distribution grids due to increasing LCT penetrations. The major objectives are the identification of the most severe LCT, grid impact issue, seasonal effect, and vulnerable distributional area, considering the physical models of the LCTs. It is concluded that Winter is the most hazardous for the future grid impact, characterized by nearly 3 times higher over-loading and 2.5 times higher voltage deviations during high HP penetrations, while suburban areas are the most vulnerable. Moreover, while HPs seem to have, in general, a greater impact compared to EVs, EVs cause more prolonged violations. While this work follows a bottom-up approach, using detailed physical models, aggregated national data has also been acquired, which is often used by top-down approaches. Different grid impact issues have been compared for the two approaches in terms of magnitude and duration. While bottom-up approaches generate more pessimistic results regarding the magnitude of the violations, results about the duration of the violations can be contradictory.
Keywords: LCT; PVs; EVs; Heat pumps; Distribution grids; Grid impact (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923012424
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:352:y:2023:i:c:s0306261923012424
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121878
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().