Design and performance investigation of a novel self-adaptive radiative cooling module for thermal regulation in buildings
Quan Gong,
Lin Lu and
Jianheng Chen
Applied Energy, 2023, vol. 352, issue C, No S0306261923012928
Abstract:
Daytime radiative cooling utilizes the process of reflecting sunlight and radiating heat through the atmospheric transparent window (8–13 μm) to achieve spontaneous cooling of an object. However, the existing challenge lies in the disparity between the cooling supply and demand, necessitating the development of self-regulating radiative cooling. This study introduces a novel design that combines paraffin wax with a radiative cooler, leading to the development of a self-adaptive radiative cooler (SRC) with two distinct modes based on dynamic optical properties. The spectral properties of the four SRCs were calculated by Fresnel equation, and it was found that the SRC possessed the ability to optimally absorb solar energy (Δα = 0.322) and automatically adjusted their thermal emittance (Δε = 0.552) in response to ambient temperature changes, facilitated by the liquid-solid transition, especially for Case 1. Therefore, the novel SRCs demonstrate a unique behaviour: they are warmer than static radiative coolers (ΔT = 3 K) in cold ambient conditions, while maintaining high cooling power in hot environments. Through extensive simulations for various cities and climates, this study demonstrates the superior energy-saving performance of the SRCs in building thermal regulation compared to that of static radiative coolers (Δδ1 = 9.6%).
Keywords: Phase change material; Dynamic spectral properties; Self-adaptive radiative cooler; Building energy saving (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923012928
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:352:y:2023:i:c:s0306261923012928
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121928
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().