EconPapers    
Economics at your fingertips  
 

Agrivoltaic approach in improving soil resistivity in large scale solar farms for energy sustainability

M.E. Ya'acob, Li Lu, S.A. Zulkifli, N. Roslan and W.F.H. Wan Ahmad

Applied Energy, 2023, vol. 352, issue C, No S0306261923013077

Abstract: Recently, approaches have been established to improve the grounding system performance, especially with the increasing numbers of large-scale solar (LSS) PV farms. Soil resistivity is one of the contributing factors to the inefficiency of power generation as it induces high impedance on electricity flow from the source to highly sensitive PV equipment and devices such as inverters. Some critical issues on nutrient leaching derived from ammonium sulphate fertilizer direct to ground soil are the focal point of this work with the fact that soil resistivity value is inversely proportional to increasing soil salt content. Therefore, a low grounding system could be obtained with a high Electrical Conductivity (EC) and high soil moisture content. In this work, a conceptual setup for an agrivoltaic condition with 500 units of herbal crops has been cultivated directly underneath 1 PV string in Puchong Solar Farm, Selangor, Malaysia. The amount of salt or nutrient under this condition was measured leaching approximately 40 mL per polybag as means of ground treatment to improve soil resistivity value, thus indirectly reducing the risk of electrical damage. The agrivoltaic approach has shown that it can improve the performance of a grounding system in an LSS PV farm with a significant reduction of 4.45 Ω earth resistance on average.

Keywords: Energy sustainability; Nutrient leachate; Grounding system; Agrivoltaics; Soil resistivity (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923013077
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:352:y:2023:i:c:s0306261923013077

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.121943

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:352:y:2023:i:c:s0306261923013077