Novel strategy for reducing the minimum miscible pressure in a CO2–oil system using nonionic surfactant: Insights from molecular dynamics simulations
Zhoujie Wang,
Jianzhong Zhu and
Songyan Li
Applied Energy, 2023, vol. 352, issue C, No S0306261923013302
Abstract:
Effective CO2-oil miscibility is a vital factor in optimizing oil production during CO2 flooding and enhancing CO2 storage capacity. This research investigates the impact of various surfactants, temperatures, and pressures on CO2-oil interfacial tension (IFT) through experimental measurements. It also evaluates the reduction in minimum miscible pressure (MMP). Subsequently, molecular dynamics (MD) simulations analyze gas-liquid miscibility, focusing on relative concentration, interaction energy, radial distribution function (RDF), and miscibility degree (Dmix). Results indicate that introducing a compound nonionic surfactant SF significantly reduces IFT and MMP, achieving an impressive 19.59% MMP reduction. Moreover, SF inclusion boosts Dmix by 8.57%, reflecting enhanced miscibility. The highest absolute value of average interaction energy (EInter) is observed, primarily driven by van der Waals interactions. SF's augmented CO2 coordination number contributes to improved Dmix and reduced MMP. SF's nonpolar groups react with CO2, reducing asymmetric forces between phases and lowering IFT. Electronegative fluorine atoms in SF interact with electron-deficient carbon atoms in CO2, heightening CO2 solubility. Elevated system pressure or reduced temperature amplifies EInter, the coordination number, and subsequently enhances Dmix. Experimentally measured MMP results closely align with MD simulations, with an average relative error of 4.63%. This study elucidates CO2-oil miscibility mechanisms on experimental and molecular scales, offering a promising avenue for future CO2 flooding research.
Keywords: CO2–oil system; Nonionic surfactant; Interfacial tension; Miscibility behaviors; Molecular dynamics simulation; High pressure and high temperature (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923013302
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:352:y:2023:i:c:s0306261923013302
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121966
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().