Effects of piezoelectric energy harvesting from a morphing flapping tail on its performance
Hossam Alqaleiby,
Mahmoud Ayyad,
Muhammad R. Hajj,
Saad A. Ragab and
Lei Zuo
Applied Energy, 2024, vol. 353, issue PA, No S0306261923013867
Abstract:
Monitoring fish migration, which can extend over distances of thousands of kilometers, via fish tags is important to maintain healthy fish stocks and preserve biodiversity. One constraint of current fish tags is the limited power of their batteries. Attaching a piezoelectric element to an oscillating part of the fish body has been proposed to develop self-powered tags. To determine the functionality and potential of this technology, we present an analysis showing variations of the generated voltage with specific aspects of the tail’s response. We also perform numerical simulations to validate the analysis and determine the effects of attaching a piezoelectric element on performance metrics including thrust generation, propulsive efficiency, and harvested electric power. The tail with the attached piezoelectric element is modeled as a unimorph beam moving at a constant forward speed and excited by sinusoidal pitching at its root. The hydrodynamic loads are calculated using three-dimensional unsteady vortex lattice method. These loads are coupled with the equation of motion, which is solved using the finite element method. The implicit finite different scheme is used to discretize the time-dependent generated voltage equation. The analysis shows that the harvested electric power depends on the slope of the trailing edge, a result that is validated with the numerical simulations. The numerical simulations show that, depending on the excitation frequency, attaching a piezoelectric element can increase or decrease the thrust force. The balance of required hydrodynamic power, generated propulsive power and harvested electrical power shows that, depending on the excitation frequency, relatively high levels of harvested power can be harvested without a high adverse impact on the hydrodynamic or propulsive power. For a specified frequency of oscillations, the approach and results can be used to identify design parameters where harvested electrical power by a piezoelectric element will have a minimal adverse impact on the hydrodynamic or propulsive power of a swimming fish.
Keywords: Fish tags; Piezoelectric energy harvesting; Finite-element method; Flexible fish tail; Three-dimensional unsteady vortex lattice method (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923013867
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923013867
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.122022
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().