Multi-strategy adaptive guidance differential evolution algorithm using fitness-distance balance and opposition-based learning for constrained global optimization of photovoltaic cells and modules
Qianlong Liu,
Chu Zhang,
Zhengbo Li,
Tian Peng,
Zhao Zhang,
Dongsheng Du and
Muhammad Shahzad Nazir
Applied Energy, 2024, vol. 353, issue PA, No S030626192301396X
Abstract:
It is of great significance to obtain the parameters of photovoltaic (PV) models quickly and accurately for the efficient operation and maintenance of PV power plants. A multi-strategy adaptive guidance differential evolution (AGDE) algorithm using fitness-distance balance (FDB) and opposition-based learning (OBL) is proposed for constrained global optimization of PV cells and modules. FDB and OBL are added on the basis of AGDE to improve the local search ability of the algorithm, and thus identify the parameters of the PV models faster and more accurately. Among the two improved strategies, FDB is a recently developed powerful method that can efficiently model selection processes in nature. In this study, the mutation mating pool of the AGDE algorithm is redesigned using the FDB method. OBL is adopted to increases the initial population diversity of AGDE. In order to verify the performance of the proposed FDB-AGDE in the parameter estimation for PV models, the experimental verification is carried out on two PV cells and three PV modules. The experimental results show that FDB-OADE has better accuracy and robustness in photovoltaic identification compared with other algorithms.
Keywords: PV models; Parameter estimation; Adaptive guidance differential evolution algorithm; Opposition-based learning; Fitness distance balance (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192301396X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:353:y:2024:i:pa:s030626192301396x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.122032
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().