EconPapers    
Economics at your fingertips  
 

Thermo-economic and environmental analysis of a CO2 residential air conditioning system in comparison to HFC-410A and HFC-32 in temperate and subtropical climates

Osama Aljolani, Florian Heberle and Dieter Brüggemann

Applied Energy, 2024, vol. 353, issue PA, No S030626192301437X

Abstract: Energy conversion in accordance with environmental protection is becoming one of the dominant factors for the sustainable development of modern society. Most of the present air-conditioning (AC) systems use hydrofluorocarbons (HFCs), which contribute to global warming, as the working fluid. In contrast, natural refrigerants, such as CO2 (carbon dioxide), NH3 (ammonia), R290 (propane) and hydrocarbons (HCs) have a significantly lower climate relevance. Furthermore, R744 (carbon dioxide) is favorable, from the perspective of safety, compared to R290 and R717 (ammonia). In this study, an energetic, environmental, and economic analysis is conducted to evaluate the performance of a residential air-conditioning system using CO2, R410A, and R32 as the working fluids. An assessment is carried out by analyzing the AC systems in temperate and subtropical regions in Europe, in particular Munich, Florence, and Malaga. The load demand of a multi-family house is estimated by the Hourly Analysis Program (HAP). The AC systems and their energy consumption is simulated by Aspen Plus and validated by experimental data. The life cycle assessment is performed using SimaPro software and, additionally, an economic analysis is conducted. The results show that the annual emitted CO2-equivalents of the CO2 air-conditioning system are up to 75.1% lower than those of R410A and R32. However, in case of CO2 as the working fluid, the annual energy efficiency ratio is reduced by between 23.3% and 31.4%, while the life cycle cost increases by up to 55.4% compared to the studied HFC air-conditioning systems. In general, it was concluded that, for countries in the temperate zone, it is a promising way to adopt a CO2 air-conditioning system for space cooling in the near future with the assistance of an electricity price subsidy and CO2 compressor price reduction, while it is not suitable for countries in the subtropical zone, such as Malaga.

Keywords: Residential air-conditioning; CO2 Transcritical cycle; European case studies; Annual cooling load; Life cycle assessment; Life cycle cost (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192301437X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:353:y:2024:i:pa:s030626192301437x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.122073

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s030626192301437x