Novel GPU-accelerated high-resolution solar potential estimation in urban areas by using a modified diffuse irradiance model
Niko Lukač,
Domen Mongus,
Borut Žalik,
Gorazd Štumberger and
Marko Bizjak
Applied Energy, 2024, vol. 353, issue PA, No S0306261923014939
Abstract:
In the past years various methods have been developed to estimate high-resolution solar potential in urban areas, by simulating solar irradiance over surface models that originate from remote sensing data. In general, this requires discretisation of solar irradiance models that estimate direct, reflective, and diffuse irradiances. The latter is most accurately estimated by an anisotropic model, where the hemispherical sky dome from arbitrary surface’s viewpoint consists of the horizon, the circumsolar and sky regions. Such model can be modified to incorporate the effects of shadowing from obstruction with a view factor for each sky region. However, state-of-the-art using such models for estimating solar potential in urban areas, only considers the sky view factor, and not circumsolar view factor, due to high computational load. In this paper, a novel parallelisation of solar potential estimation is proposed by using General Purpose computing on Graphics Processing Units (GPGPU). Modified anisotropic Perez model is used by considering diffuse shadowing with all three sky view factors. Moreover, we provide validation based on sensitivity analysis of the method’s accuracy with independent meteorological measurements, by changing circumsolar sky region’s half-angle and resolution of the hemispherical sky dome. Finally, the presented method using GPPGU was compared to multithreaded Central Processing Unit (CPU) approach, where on average a 70x computational speedup was achieved. Finally, the proposed method was applied over a ∼21km2 urban area, obtained from Light Detection And Ranging (LiDAR) data, where the computation of solar potential was performed in a reasonable time.
Keywords: Solar energy; Solar potential; Anisotropic diffuse irradiance; LiDAR; GPGPU (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923014939
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014939
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.122129
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().