EconPapers    
Economics at your fingertips  
 

Modeling current-rate effects in lithium-ion batteries based on a distributed, multi-particle equivalent circuit model

Pablo Rodríguez-Iturriaga, David Anseán, Salvador Rodríguez-Bolívar, Víctor Manuel García, Manuela González and Juan Antonio López-Villanueva

Applied Energy, 2024, vol. 353, issue PA, No S0306261923015052

Abstract: Due to the wide range of operating conditions under which a lithium-ion battery operates, it is essential to develop models that are able to replicate experimental behavior in a variety of temperature and current-rate scenarios. However, there are some complex effects in the range of moderate to high current rates that are difficult to justify with current formulations of both equivalent circuit and electrochemical models, due to model shortcomings or a challenging parameterization process. For this reason, in this article we present a discretely distributed, multi-particle equivalent circuit model capable of addressing said limitations. By obtaining quasi-static characteristics from thermodynamic tests and making informed assumptions about particle size distributions, the model is only dependent on three parameters that are directly correlated to those determined from experimental impedance data. The proposed model is able to provide accurate results in a current range from C/10 to 2C (RMS≤12 mV at 40 °C) as well as dynamic operation (RMS≤7 mV at 40 °C), and ensures consistent behavior at ambient temperatures in the range from 10 °C to 40 °C. For all the reasons above, the proposed model constitutes a suitable alternative for modeling complex behavior in lithium-ion batteries with a reduced computational cost and a well-defined parameterization process.

Keywords: Lithium-ion battery; Distributed ECM; Multi-particle model; Current rate; EIS (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923015052
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923015052

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.122141

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923015052