Control co-design of a floating offshore wind turbine
Nikhar J. Abbas,
John Jasa,
Daniel S. Zalkind,
Alan Wright and
Lucy Pao
Applied Energy, 2024, vol. 353, issue PB, No S0306261923014009
Abstract:
Several control co-design (CCD) optimizations of floating offshore wind turbines are presented in this work using the newly introduced Wind Energy with Integrated Servo-Control (WEIS) framework. Three methods for parameterizing the primary tuning inputs to the Reference Open-Source Controller are presented and optimized, including a sensitivity-margin constrained controller. WEIS, a detailed, open-source floating offshore wind turbine design optimization tool is then used to conduct CCD optimizations on the International Energy Agency (IEA) 15MW wind turbine on the University of Maine VolturnUS-S semisubmersible platform. The results from optimizations are shown to reduce the levelized cost of energy (LCOE) by approximately 1% and 4% when optimizing the tower and platform, respectively. It is also found that the coupling between the tower and control system parameters is weaker than the coupling between the floating system and control system parameters, showing that CCD may not be advantageous for certain problems. Finally, a subset of operational design load cases is run to verify the optimized controller and turbine models.
Keywords: Floating wind turbines; Control systems; Optimization; Multidisciplinary design (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923014009
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923014009
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.122036
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().