EconPapers    
Economics at your fingertips  
 

Probabilistic forecast-based portfolio optimization of electricity demand at low aggregation levels

Jungyeon Park, Estêvão Alvarenga, Jooyoung Jeon, Ran Li, Fotios Petropoulos, Hokyun Kim and Kwangwon Ahn

Applied Energy, 2024, vol. 353, issue PB, No S0306261923014733

Abstract: In the effort to achieve carbon neutrality through a decentralized electricity market, accurate short-term load forecasting at low aggregation levels has become increasingly crucial for various market participants' strategies. Accurate probabilistic forecasts at low aggregation levels can improve peer-to-peer energy sharing, demand response, and the operation of reliable distribution networks. However, these applications require not only probabilistic demand forecasts, which involve quantification of the forecast uncertainty, but also determining which consumers to include in the aggregation to meet electricity supply at the forecast lead time. While research papers have been proposed on the supply side, no similar research has been conducted on the demand side. This paper presents a method for creating a portfolio that optimally aggregates demand for a given energy demand, minimizing forecast inaccuracy of overall low-level aggregation. Using probabilistic load forecasts produced by either ARMA-GARCH models or kernel density estimation (KDE), we propose three approaches to creating a portfolio of residential households' demand: Forecast Validated, Seasonal Residual, and Seasonal Similarity. An evaluation of probabilistic load forecasts demonstrates that all three approaches enhance the accuracy of forecasts produced by random portfolios, with the Seasonal Residual approach for Korea and Ireland outperforming the others in terms of accuracy and computational efficiency.

Keywords: Portfolio optimization; Short-term load forecasting; Low-aggregation load; Probabilistic forecasts; Aggregated electricity demand (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923014733
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923014733

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.122109

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923014733