A data-driven Recommendation Tool for Sustainable Utility Service Bundles
Frederik vom Scheidt and
Philipp Staudt
Applied Energy, 2024, vol. 353, issue PB, No S0306261923015015
Abstract:
Managers in electric utilities face the disruption of their conventional business model of selling electricity per kilowatt-hour for invariant prices. However, the forthcoming widespread uptake of sustainable energy technologies – such as rooftop solar, batteries, heat pumps and electric vehicles – by residential customers also represents a chance for local utilities to diversify their service portfolio. To appropriately market these technologies to households, utilities need data on consumers. In this paper, we present a novel data-driven service bundle recommendation model incorporating technologies and tariffs for residential customers based on individual household data. We validate the model in a case study and quantify the utility of sharing different levels of household data. We find substantial synergies of flexible sustainable technologies and time-varying tariffs, leading to higher cost reductions for customers than tariff-switching alone that can be recommended based on easy-to-obtain data. This demonstrates a large potential for energy service bundle marketing by local utilities. The presented Machine Learning recommendation models enable more reliable recommendations than a naive benchmark. Our research thus demonstrates the potential of data-driven utility marketing strategies that focus on service bundling and the integration of customers’ energy consumption data.
Keywords: Energy data; Machine Learning; Prosumer; Heat pumps; Energy storage; Electric vehicles; Service bundling; Electricity tariffs; Service recommendation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923015015
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015015
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.122137
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().