Multi-prediction of electric load and photovoltaic solar power in grid-connected photovoltaic system using state transition method
Hu Wang,
Lei Mao,
Heng Zhang and
Qiang Wu
Applied Energy, 2024, vol. 353, issue PB, No S0306261923015027
Abstract:
In the grid-connected photovoltaic system (GPVS), due to characteristics of fluctuation and intermittency for photovoltaic solar power, and high randomness for electric load, it is of great difficulty for integrating photovoltaic solar power into power grid. Therefore, an accurate prediction of short-term electric load and photovoltaic solar power is of great importance for balancing supply and demand. Currently, numerous isolated models about the forecasting of electric load and photovoltaic solar power have emerged, while the coupling effect between them has been hardly considered and lower stability of existing methods brings great difficulty in providing reliable predictions at practical applications. To address this gap, this paper proposes an interpretable multi-prediction model for short-term (day-ahead) electric load and photovoltaic solar power forecasting. In the framework, a non-parametric functional principal component analysis (FPCA) is constructed to extract the overall trend and identify dominant modes of variation in the daily electric load and photovoltaic solar power data. Furthermore, state transition matrix is proposed to comprehensively interpret the coupling effect, with which a novel multi-prediction strategy that takes advantage of coupling effect is further introduced, where the Maximum Likelihood Estimation (MLE) is employed to estimate unknown parameters. Moreover, data from California Independent System Operator (ISO) is utilized to investigate the performance of proposed method, and its results are compared with those from other widely-used techniques. Results show that the proposed method can increase prediction accuracy of electric load and photovoltaic solar power by 16.84% and 10.57%, respectively, with narrow fluctuations and reasonable computational cost (211.11 s), demonstrating that it can provide better predictions in terms of prediction accuracy, stability and applicability.
Keywords: Grid-connected photovoltaic system; Coupling effect; State transition matrix; Short-term electric load forecasting; Short-term photovoltaic solar power forecasting (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923015027
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015027
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.122138
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().