Load forecasting for regional integrated energy system based on complementary ensemble empirical mode decomposition and multi-model fusion
Jian Shi and
Jiashen Teh
Applied Energy, 2024, vol. 353, issue PB, No S0306261923015106
Abstract:
The multiple loads of the Regional Integrated Energy System (RIES) possess characteristics of randomness and relatively higher complexity. The current forecasting methods struggle to effectively handle the non-stationary sequence of these multiple loads, leading to less accurate load forecasting. To address this problem, this paper proposes a multi-model fusion prediction method based on Complementary Ensemble Empirical Mode Decomposition (CEEMD), Genetic Algorithm-Long Short Term Memory (GA-LSTM), Radial Basis Fusion-Autoencoder (RBF-AE), and Particle Swarm Optimization-Support Vector Machine (PSO-SVM). First, the load sequence is decomposed into different frequency Intrinsic Mode Functions (IMFs) components using CEEMD. The IMFs components are then grouped based on their zero-crossing rate and Sample Entropy (SE), resulting in three distinct groups: high-, medium-, and low-frequency components. Next, the high-frequency load component, which exhibit strong randomness, are predicted using GA-LSTM. The medium-frequency load component, which have weaker randomness, are predicted using RBF-AE. The smooth and periodic low-frequency load component are predicted using PSO-SVM. The prediction results from these three models are reconstructed to obtain the final predictive value. Finally, experimental results confirm that the forecasting model can effectively handle non-stationary load sequences and demonstrate the highest level of forecasting accuracy.
Keywords: Regional integrated energy system; Complementary ensemble empirical mode decomposition; Zero-crossing rates; Sample entropy; Prediction accuracy (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923015106
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015106
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.122146
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().