Explainable Spatio-Temporal Graph Neural Networks for multi-site photovoltaic energy production
Alessio Verdone,
Simone Scardapane and
Massimo Panella
Applied Energy, 2024, vol. 353, issue PB, No S0306261923015155
Abstract:
In recent years, there has been a growing demand for renewable energy sources, which are inherently associated with a decentralized distribution and dependent on weather conditions. Their management and associated forecasting of produced energy are tasks of increasing complexity. Spatio-Temporal Graph Neural Networks have been applied in this context with excellent results, taking advantage of the correct integration of both topological data, defined by the distribution of the plants in the territory, and temporal data of the time series. A drawback of graph neural networks is the recurrent mechanism adopted to process the temporal part, which increases greatly the computational load of these models. Moreover, these models are formulated for real and sensitive contexts where, in addition to being accurate, the predictions must also be understandable by the human operator. For these reasons, in this paper we propose a novel explainable energy forecasting framework based on Spatio-Temporal Graph Neural Networks: the forecasting model generates predictions by processing temporal and spatial information using a spectral graph convolution and a 1D convolutional neural network respectively, then we apply a state-of-the-art explainer to them in order to produce explanations about the generation process. Our proposed method obtains predictions having better performance than previous approaches, both in terms of computational efficiency and prediction accuracy, with the possibility of interpreting them in order to understand the generation process. The novel approach based on fusion of forecasting and explainability in a single framework enables the creation of powerful and reliable systems suitable for real-world issues and challenges.
Keywords: Spatio-Temporal Graph Neural Network; Renewable energy sources; Time series forecasting; Smart grid; Explainability (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923015155
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015155
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.122151
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().