EconPapers    
Economics at your fingertips  
 

Simulation of argon-excited microwave plasma reactor for green energy and CO2 conversion application

Mei Yin Ong, Shir Reen Chia, Jassinnee Milano, Saifuddin Nomanbhay, Kit Wayne Chew, Talal Yusaf and Pau Loke Show

Applied Energy, 2024, vol. 353, issue PB, No S0306261923015246

Abstract: Microwave plasma as a potential tool to convert CO2 has been extensively studied in recent years. A simulated study on the plasma parameters via the variation of the operating pressure of a microwave plasma model has been performed in this study. The establishment of the model was based on the finite element method to analyse the spatial distribution of plasma parameters in the plasma torch over a period of time. Plasma parameters such as electron potential, density, and temperature were investigated at three different pressures, and the growth of electron potential and density were associated with time. The distribution of molecular ions was observed to be located more on the enter port of the microwave or waveguide near the location of the magnetron at the initial stage. The electron density was found to be constant after it reached maximum value for all the determined pressures. However, the electron temperature behaved differently as compared to the electron potential and density, the distribution of high electron temperature did not enhance during the processing time. The analysis of microwave plasma parameters is beneficial for plasma reactor designing, particularly for CO2 conversion.

Keywords: Numerical modeling; Microwave plasma; COMSOL simulation; Energy (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923015246
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015246

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.122160

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015246