New insights into the impurity transport and separation behaviours during metal hydride dehydrogenation for ultra-pure hydrogen
Leilei Guo,
Zhen Wu,
Ruiqing Li,
Xianchun Huang,
Bofei Wang,
Fusheng Yang and
Zaoxiao Zhang
Applied Energy, 2024, vol. 353, issue PB, No S0306261923015428
Abstract:
The hydrogen separation and purification method based on metal hydride (MH) is viewed as one of the ideal methods for recycling industrial by-product hydrogen. Usually, self-produce hydrogen purging is conducted to remove the impurity. However, the mechanism of impurity transport and separation under the MH dehydrogenation process is still not clear so that the purity of produced hydrogen or the hydrogen recovery ratio is low. In this paper, a novel poisoning dehydrogenation kinetics considering the effect of passivation layer is proposed to accurately describe the dehydrogenation properties under the impurity poisoning conditions. The poisoning factor is introduced to describe the poisoning effect of impurities on MH materials. More active impurity or higher impurity concentration result in the larger poisoning factor. Based on the poisoning dehydrogenation kinetics, the MH dehydrogenation reaction model for self-produce hydrogen purging process is developed to describe the impurity transport and separation behaviours. The effects of operating parameters on the impurity transport and separation are further investigated for ultra-pure hydrogen. It is found that the low temperature and low outlet flow rate results in the low hydrogen loss for ultra-pure hydrogen. After the optimization, an efficient hydrogen separation and purification with both a hydrogen purity of 99.9999% and a hydrogen recovery ratio of more than 80% is achieved, which shows the potential in the hydrogen separation and purification of industrial by-product hydrogen.
Keywords: Metal hydride; Poisoning effect; Kinetic model; Hydrogen separation; Ultra-pure hydrogen (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923015428
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015428
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.122178
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().