EconPapers    
Economics at your fingertips  
 

A novel on-site SMR process integrated with a hollow fiber membrane module for efficient blue hydrogen production: Modeling, validation, and techno-economic analysis

Chonghyo Joo, Jaewon Lee, Yurim Kim, Hyungtae Cho, Boram Gu and Junghwan Kim

Applied Energy, 2024, vol. 354, issue PB, No S030626192301591X

Abstract: Steam methane reforming (SMR) is widely used in the hydrogen production industry; however, a significant amount of CO2 is released during this process. Several efforts have been made to produce low-CO2 hydrogen (blue hydrogen) via SMR; however, the proposed solutions are not applicable to small-scale plants. Therefore, this study proposes an on-site SMR process combined with a hollow fiber membrane module (HFMM) for CO2 capture in small-scale plants. First, mathematical models for the on-site SMR process and HFMMs were developed, and their accuracy was validated with real-world data. Second, we designed and implemented the SMR–HFMM model based on different operating conditions and gas compositions at three potential CO2 capture locations (dry syngas, PSA tail gas, and flue gas). The CO2 capture performances at these three locations were compared using five performance indicators: stage cut, separation factor, CO2 recovery rate, permeate composition, and retentate composition. Finally, to evaluate the integrated processes for each CO2 capture location, feasible ranges of the number of HFMMs and the levelized cost of hydrogen (LCOH) were calculated. In the case of CO2 captured in dry syngas, the number of HFMMs required to achieve a CO2 purity of over 90% was calculated to be 10–25. Furthermore, despite additional HFMM installation, the LCOH was 0.8%–1.5% lower than that of the conventional on-site SMR process that is 7.07–7.13 USD/kgH2. The proposed integrated SMR–HFMM process is a potential solution to the problem of CO2 emissions in on-site SMR processes with a lower LCOH. Therefore, the findings of this study could be of significant importance in improving the environmental sustainability of hydrogen production in small-scale plants.

Keywords: Blue hydrogen production; Steam methane reforming; On-site hydrogen refueling station; Membrane CO2 capture; Hollow fiber membrane module (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192301591X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:354:y:2024:i:pb:s030626192301591x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.122227

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:354:y:2024:i:pb:s030626192301591x