EconPapers    
Economics at your fingertips  
 

Feasibility study of energy storage using hydraulic fracturing in shale formations

ZhiWen Hu and HanYi Wang

Applied Energy, 2024, vol. 354, issue PB, No S030626192301615X

Abstract: Electric energy storage is currently the primary solution for addressing the intermittency and fluctuation of renewable energy sources. Traditional energy storage methods often struggle to simultaneously meet the demands of long storage duration, large capacity, high efficiency, and low cost. In this study, we present and verify the feasibility of a new energy storage method that utilizes hydraulic fracturing technology to store electrical energy in artificial fractures. Our study analyzed factors that impact energy storage capacity and efficiency, which provides a theoretical basis for optimizing hydraulic fracturing design for energy storage. This study also shows a promising direction for transforming depleted shale oil and gas wells into energy storage wells.

Keywords: Hydraulic fracturing; Energy storage; Renewable energy; Long duration storage (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192301615X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:354:y:2024:i:pb:s030626192301615x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.122251

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:354:y:2024:i:pb:s030626192301615x