Dynamically engineered multi-modal feature learning for predictions of office building cooling loads
Yiren Liu,
Xiangyu Zhao and
S. Joe Qin
Applied Energy, 2024, vol. 355, issue C, No S0306261923015477
Abstract:
This paper reports a new knowledge-driven engineered feature learning approach in response to the Global AI Challenge for Building E&M Facilities held by the Electrical and Mechanical Service Department (EMSD) of the Hong Kong SAR. The results were awarded with a Grand Prize by the competition organizer. A dynamically engineered multi-modal feature learning (DEMMFL) method is proposed for predicting the cooling load of two office buildings. The DEMMFL model is estimated with the Lasso-ridge regression and compared with other well-known methods such as the Lasso. The novel approach applies control system knowledge to engineer useful features and explore load patterns for multi-mode modeling. Deep learning methods including LSTM, GRU, and AutoGluon are implemented for automated machine learning and tested in parallel to compare the performance of the proposed model with existing methods. The proposed model is demonstrated to predict long-term cooling load most accurately using engineered features from weather information only.
Keywords: Feature engineering; Building energy management; Cooling load prediction; Sparse statistical learning; Automated machine learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923015477
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:355:y:2024:i:c:s0306261923015477
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.122183
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().