EconPapers    
Economics at your fingertips  
 

Multi-objective optimization design of the wind-to-heat system blades based on the Particle Swarm Optimization algorithm

Jing Qian, Xiangyu Sun, Xiaohui Zhong, Jiajun Zeng, Fei Xu, Teng Zhou, Kezhong Shi and Qingan Li

Applied Energy, 2024, vol. 355, issue C, No S0306261923015507

Abstract: A novel wind turbine direct driving heat pump (WTDHP) system is proposed, in which the heat pump is employed to replace the wind turbine's generator. The impacts of the blades with different tip speed ratios on WTDHP system are analyzed in this study. The inverse design method, verified by importing the design shape into FAST for simulation and comparing the simulated tip speed ratio and axial induction factor, was employed to create blades with different tip speed ratios. The heating performances of different blade shape designs at various turbulence and wind speeds are understood. The conclusion is drawn that the blades with a low tip speed ratio (λ=6–8) are clearly superior for heating in the turbulence categories IEC A at wind speeds between 6 and 14 m/s. However, the dynamic responses of the system are weakened by low turbulence and wind speeds. Taking into account the cost and manufacturing process, the blades with a high tip speed ratio can be chosen. Furthermore, the multi-objective optimization of blades was carried out using the enhanced Particle Swarm Optimization (PSO) algorithm, considering heating capacity, flapping load and blade mass. Based on the Wilson method, initial blade of PSO optimization algorithm is generated. Obtaining the heating capacity, flapping load and blade mass in real time from the simulation, the objective functions is calculated to update the status of particle swarm. After optimization using the improved multi-objective algorithm under turbulent wind with an average wind speed of 7 m/s, the blade mass is reduced by 2.96%, the flapping moment is reduced by 3.17%, and the heating capacity is increased by 1.22%. The results show that the optimization effect is more obvious at higher wind speeds.

Keywords: Wind energy; Wind-to-heat system; Heat pump; Inverse design method; Blade multi-objective optimization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923015507
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:355:y:2024:i:c:s0306261923015507

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.122186

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923015507