Analysis of ternary hybrid nanofluid in microchannel-cooled cylindrical Li-ion battery pack using multi-scale multi-domain framework
Kartik Kumar,
Jahar Sarkar and
Swasti Sundar Mondal
Applied Energy, 2024, vol. 355, issue C, No S0306261923016057
Abstract:
For cylindrical Li-ion battery packs, the battery thermal management system can be properly designed and analyzed from an energy-exergy viewpoint during charging and discharging to ensure the proper functionality of batteries; however, not been explored yet. Hence, cylindrical Li-ion battery pack with novel-designed serpentine microchannel-cooled thermal management system are analyzed. Applying the Multi-Scale Multi-Domain Newman, Tiedemann, Gu, and Kim model, an electrochemical model is used for the 3D battery thermal modeling. Effects of circular and rectangular cross-sectional shaped microchannels and using ternary hybrid nanofluids [THNF1 (Al2O3 (0.5%) + Cu (0.5%) + MWCNT (1%)/water) and THNF2 (Al2O3 (0.5%) + Cu (0.5%) + Graphene (1%)/water] are investigated at a 3C-discharge rate. Results indicate that the use of ternary hybrid nanofluid and microchannel cross-sectional shape has a strong influence. Maximum temperature, temperature uniformity, pumping power, heat transfer coefficient to pressure drop ratio, and entropy generation are the key factors. The present simulation can predict individual battery thermal behavior during charging and discharging. The suggested design successfully lowers the cell temperature to 305.24 K by using THNF2 and the temperature difference to 5.23 K of the 26,650-type cylindrical cell. Rectangular cross-sectioned microchannel is found to be more effective. The thermal control of batteries is greatly enhanced by using ternary hybrid nanofluid. The suggested technique will improve the battery life.
Keywords: Li-ion battery; Battery thermal management; Ternary hybrid nanofluids; Electric vehicle; MSMD NTGK battery model; Entropy generation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923016057
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:355:y:2024:i:c:s0306261923016057
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.122241
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().