EconPapers    
Economics at your fingertips  
 

Electricity demand forecasting with hybrid classical statistical and machine learning algorithms: Case study of Ukraine

T. González Grandón, J. Schwenzer, T. Steens and J. Breuing

Applied Energy, 2024, vol. 355, issue C, No S0306261923016136

Abstract: This article presents a novel hybrid approach using classic statistics and machine learning to forecast the national demand of electricity. As investment and operation of future energy systems require long-term electricity demand forecasts with hourly resolution, our mathematical model fills a gap in energy forecasting. The proposed methodology was constructed using hourly data from Ukraine’s electricity consumption ranging from 2013 to 2020. To this end, we analysed the underlying structure of the hourly, daily and yearly time series of electricity consumption. The long-term yearly trend is evaluated using macroeconomic regression analysis. The mid-term model integrates temperature and calendar regressors to describe the underlying structure, and combines ARIMA and LSTM “black-box” pattern-based approaches to describe the error term. The short-term model captures the hourly seasonality through calendar regressors and multiple ARMA models for the residual. Results show that the best forecasting model is composed by combining multiple regression models and a LSTM hybrid model for residual prediction. Our hybrid model is very effective at forecasting long-term electricity consumption on an hourly resolution. In two years of out-of-sample forecasts with 17520 timesteps, it is shown to be within 96.83% accuracy.

Keywords: National electricity demand; Forecasting; ARIMA; LSTM (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923016136
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:355:y:2024:i:c:s0306261923016136

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.122249

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923016136