EconPapers    
Economics at your fingertips  
 

Optimal design of piezoelectric energy harvesters for bridge infrastructure: Effects of location and traffic intensity on energy production

S. Yao, P. Peralta-Braz, M.M. Alamdari, R.O. Ruiz and E. Atroshchenko

Applied Energy, 2024, vol. 355, issue C, No S0306261923016495

Abstract: Piezoelectric energy harvesters (PEHs) can be used as an additional power supply for a Structural Health Monitoring (SHM) system. Its design can be optimised for the best performance, however, the optimal design depends on the input vibration and locations. In this work, we extend an optimisation framework from our previous studies to include the effect of the PEH’s location, which uses the cantilevered PEH Kirchhoff–Love plate model discretised by IsoGeometric Analysis (IGA) and coupled with Particle Swarm Optimisation (PSO) algorithm to find the designs with maximum energy outputs for a large number of input acceleration histories, extracted from the recorded dynamic response data of a real cable-stayed bridge in Australia. Then, clustering and evaluation under 24-h excitation are performed to find several best PEHs for the entire bridge. By comparing the best PEH at all locations with a typical benchmark device, the substantial performance improvement brought by the optimisation framework of this work is verified. The comparison results show a significant energy harvesting enhancement of 1.6 times at the best locations, 2.4 times at A2 and A3, and 3.6 times at the edge girders, respectively. The results also reveal the variability of the best design at different locations of the same structure to maximise the energy harvesting of the entire bridge, and demonstrate the design rule that the fundamental frequency of the device can be tuned within a certain frequency range to improve the robustness of PEHs design. Additional studies are performed to explore the effect of location and traffic intensity on energy harvesting by analysing the optimal PEH design and location throughout the bridge structure. The results indicate that the key factors of maximising energy harvesting efficiency are related to the input excitation and the mode of vibration being excited. The position of maximum displacement in the vibration mode corresponds to the best location for energy harvesting. Also, the best device has a fundamental frequency close to the frequency of the corresponding vibration mode. In addition, the change of traffic intensity affects the amount of convertible mechanical energy and also directs the tuning of the fundamental frequency of the PEH to achieve the highest energy conversion.

Keywords: Piezoelectric energy harvester; Kirchhoff–Love plates; Isogeometric analysis; Shape optimisation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923016495
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:355:y:2024:i:c:s0306261923016495

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.122285

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923016495