Community stochastic domestic electricity forecasting
Amin Amin and
Monjur Mourshed
Applied Energy, 2024, vol. 355, issue C, No S0306261923017063
Abstract:
The domestic sector is a significant energy consumer – accounting for around 40% of global electricity demand – due to household demand diversity and complexity. An accurate and robust estimation of domestic electrical loads, environmental impacts, and energy-efficiency potential is crucial for optimal planning and management of energy systems and applications. However, uncertainties resulting from simplistic socio-technical attributes, microclimatic variations, and oversimplification of the effects of interdependent variables make domestic energy modelling challenging. In this research, a hybrid bottom-up community energy forecasting framework is developed to estimate sub-hourly domestic electricity demand using a combination of statistical and engineering modelling approaches by considering key factors influencing household consumption, including demographic characteristics, occupancy patterns, and the features, ownership, and utilisation patterns of electric appliances. The framework is tested on a community in Wales, UK and validated on an annual, daily, and sub-hourly basis with monitored electricity usage averages derived from the UK Energy Follow-Up Survey and the sub-national electricity consumption datasets. Results closely reflect annual and daily household demand at individual dwellings and aggregated levels, with an estimation accuracy of up to 90%. Moreover, the framework facilitates more reliable sub-hourly demand profiles compared to conventional simulation practices that overestimate daily electricity demand and sub-hourly peaks by up to 15% and 50%, respectively.
Keywords: Domestic energy; Occupancy profile; Household electricity; Energy forecasting; District simulation; Energy modelling (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923017063
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:355:y:2024:i:c:s0306261923017063
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.122342
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().