EconPapers    
Economics at your fingertips  
 

Building for tomorrow: Analyzing ideal thermal transmittances in the face of climate change in Brazil

Eugénio Rodrigues, Jean Parente and Marco S. Fernandes

Applied Energy, 2024, vol. 355, issue C, No S0306261923017245

Abstract: The climate will become hotter, and buildings will perform differently as outdoor conditions evolve. If the lowest energy demand is desired, it is crucial to determine the ideal thermophysical properties of the envelope over the buildings' life span. However, the scientific literature is still scarce in providing a compelling answer. Therefore, this study (i) determines ideal thermal transmittance values (U-values) for present-day and future climates, (ii) determines to what extent the thermophysical properties will need to change to remain ideal, (iii) identifies different trends of U-values over time, (iv) establishes a relationship between outdoor air temperatures, cooling and heating setpoints, and ideal U-values, and (v) proposes a set of design strategies according to each trend. The EPSAP generative design method was used to create a large dataset of residential buildings with random geometries and U-values to evaluate their energy demand for heating and cooling in EnergyPlus. The thermal performance of each building was evaluated for 30 locations in Brazil for the current period and two future timeframes (2050 and 2080). The Future Weather Generator tool was used to morph today's typical meteorological weather to match the EC-Earth3 data for the SSP5–8.5 scenario. Although climate change has a similar relative impact, its consequences differ over time in each location. The ideal U-values have different trends in different regions: (a) remaining unchanged in the future, (b) changing from being the highest possible to the lowest of the analyzed range in 2050 or 2080, and (c) being mid-range values in the present and with similar or lower values in the future climate. The impact on the thermal loads of maintaining the present-day ideal U-values also varies significantly in the future timeframes, from being nil to representing an increase reaching 30 % in 2050 (∆ 2.94 MW·h ± 0.06 MW·h) and 57 % in 2080 (∆ 6.05 MW·h ± 0.09 MW·h). Therefore, building design professionals need to use different strategies according to each region and consider how climate evolves during the lifetime of the building.

Keywords: Climate change; Mitigation; Residential buildings; Thermal transmittance; Brazil (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923017245
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:355:y:2024:i:c:s0306261923017245

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.122360

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923017245