Optimal design of aggregated energy systems with (N-1) reliability: MILP models and decomposition algorithms
Alessandro Francesco Castelli,
Lorenzo Pilotti,
Alessandro Monchieri and
Emanuele Martelli
Applied Energy, 2024, vol. 356, issue C, No S0306261923013661
Abstract:
This work investigates the design optimization of aggregated energy systems (multi-energy systems, microgrids, energy districts, etc.) with (N-1)-reliability requirements. The problem is formulated as a two-stage stochastic Mixed Integer Linear Program which optimizes design (first stage variables) and operation variables (second stage variables) simultaneously considering a set of typical and extreme days. The analysis proposes and compares different approaches to include the (N-1) reliability requirement in the optimization problem. Moreover, the paper proposes two effective decomposition algorithms to solve the large-scale Mixed Integer Linear Program suitable for design problems with and without (N-1) reliability requirements. Depending on the instance, such decomposition algorithms allow reducing the computational time by one or more orders of magnitude (from days to a few hours, in the worst cases tested in this work). The proposed methodology is tested to design the aggregated energy system for a real case study considering both a grid-connected and off-grid installation. Results indicate that the actual reliability of the design solutions depends by the profiles of energy demand and renewable production considered in the failure scenarios included in the design problem. Including N-1 reliability requirements causes an increase in the total annual cost in the range 15–20%, due to the increase in capital costs.
Keywords: Microgrids; Multi-energy systems; Reliability; Stochastic program; MILP (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923013661
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:356:y:2024:i:c:s0306261923013661
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.122002
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().