Cost-aware modeling and operation of interconnected multi-energy microgrids considering environmental and resilience impact
Hasan Masrur,
Hooman Khaloie,
Ali T. Al-Awami,
Sami El Ferik and
Tomonobu Senjyu
Applied Energy, 2024, vol. 356, issue C, No S0306261923016847
Abstract:
Multi-energy microgrids (mMGs) are gaining rapid popularity due to the incorporation of multiple types of energy sources. Given the importance of mMGs in future energy networks, resilient, accurate economic, and environmental assessments of mMGs, as well as their interconnection, have become immense challenges. To deal with this problem, this paper presents a resilient optimization method for optimal sizing and operation of renewable-based mMGs to meet electricity and heating demand. The primary goals of this research are to reduce the system’s overall energy cost, ensure continuous power supply during power outages, and reduce environmental emission rates in mMGs enriched by the combined heat and power (CHP) unit, photovoltaic (PV), boiler unit, battery, thermal energy storage (TES), and geothermal heat pump (GHP) technologies. Game theory concepts, such as nucleolus and Shapley value, are leveraged to allocate costs between interconnected mMGs running under a coalitional paradigm, resulting in a lower optimized cost. Further, a techno-economic analysis is performed to investigate the performance of the proposed system over the business as usual (BaU) case. The results affirm the lucrativeness of the proposed model and the substantial reduction in life cycle cost, utility cost, and emission while remaining outage resilient.
Keywords: Multi-energy microgrids (mMGs); Environmental impact; Resilience; Grid outages; Interconnection; Game theory; Affordable and clean energy (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923016847
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:356:y:2024:i:c:s0306261923016847
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.122320
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().